Chauhan, R., Kaur, H., & Alam, M. A. (2010). Data clustering method for discovering clusters in spatial cancer databases. International Journal of Computer Applications, 10(6), 9-14.
De Cea, M. V. S., Diedrich, K., Bakalo, R., Ness, L., & Richmond, D. (2020, October). Multi-task Learning for Detection and Classification of Cancer in Screening Mammography. In International Conference on Medical Image Computing and Computer-Assisted Intervention (pp. 241-250). Springer, Cham.
Dhungel, N., Carneiro, G., & Bradley, A. P. (2017). A deep learning approach for the analysis of masses in mammograms with minimal user intervention. Medical image analysis, 37, 114-128.
He, K., Gkioxari, G., Dollár, P., & Girshick, R. (2017). Mask r-cnn. In Proceedings of the IEEE international conference on computer vision (pp. 2961-2969).
Karpathy, A. (2016). Cs231n convolutional neural networks for visual recognition. Neural networks, 1(1).
Le, T. L. T., Thome, N., Bernard, S., Bismuth, V., & Patoureaux, F. (2019). Multitask classification and segmentation for cancer diagnosis in mammography. arXiv preprint arXiv:1909.05397.
Li, Y., Chen, H., Zhang, L., & Cheng, L. (2018, August). Mammographic mass detection based on convolution neural network. In 2018 24th International Conference on Pattern Recognition (ICPR) (pp. 3850-3855). IEEE.
Liao, Q., Ding, Y., Jiang, Z. L., Wang, X., Zhang, C., & Zhang, Q. (2019). Multi-task deep convolutional neural network for cancer diagnosis. Neurocomputing, 348, 66-73.
López-García, G., Jerez, J. M., Franco, L., & Veredas, F. J. (2020). Transfer learning with convolutional neural networks for cancer survival prediction using gene-expression data. PloS one, 15(3), e0230536.
Min, H., Chandra, S. S., Crozier, S., & Bradley, A. P. (2019). Multi-scale sifting for mammographic mass detection and segmentation. Biomedical Physics & Engineering Express, 5(2), 025022.
Mostavi, M., Chiu, Y. C., Huang, Y., & Chen, Y. (2020). Convolutional neural network models for cancer type prediction based on gene expression. BMC Medical Genomics, 13, 1-13.
Oliveira, H. S., Teixeira, J. F., & Oliveira, H. P. (2019, September). Lightweight deep learning pipeline for detection, segmentation and classification of breast cancer anomalies. In International Conference on Image Analysis and Processing (pp. 707-715). Springer, Cham.
Samala, R. K., Chan, H. P., Hadjiiski, L. M., Helvie, M. A., Cha, K. H., & Richter, C. D. (2017). Multi-task transfer learning deep convolutional neural network: application to computer-aided diagnosis of breast cancer on mammograms. Physics in Medicine & Biology, 62(23), 8894.
Venkatesan, R., & Ganesh, A. B. (2018). Deep recurrent neural networks based binaural speech segregation for the selection of closest target of interest. Multimedia Tools and Applications.
Weinland, D., Ronfard, R., & Boyer, E. (2011). A survey of vision-based methods for action representation, segmentation and recognition. Computer vision and image understanding, 115(2), 224-241.
Yahya Kord Tamandani (2020) Early Detection of Breast Cancer in Women Using a Cost-effective Procedure. journal of Epgenetics Volume 2, Issue 1, Pages 1-6