Balancing The Expression of K-ras and CD82 Genes By Magnetic Nano-oleuropein as a New Mechanism for Inhibition of AGS Gastric Cancer Cells

Document Type : Original Article

Authors

1 Department of Biology, Rasht Branch, Islamic Azad University, Rasht, Iran

2 Department of Genetics, Ardabil Branch, Islamic Azad University, Ardabil, Iran

3 Department of Biology, Borujerd Branch, Islamic Azad University, Borujerd, Iran

Abstract

1) Background: Gastric cancer is the fourth most common cancer and the second leading cause of cancer-associated fatality in the world. During the recent decade, nanoparticles have been used widely to reduce the severity and also the treatment of cancers. The current study was performed to transfer Oleuropein into AGS cancer cells using paramagnetic nano-particles and to evaluate their effects on the cancer cell line. 2)Methods:  In this research, nine concentrations of magnetic nano-oleuropein (0, 0.15, ... 333.33 and 1000 µg/mL ) were applied against AGS cells in in-vitro condition with three replicates in the form of a completely randomized statistical design (CRD), and cell viability was investigated using MTT and Flow Cytometry assays. To determine the molecular mechanism of this effect, the relative expression of K-ras and cd82 genes were investigated using the Real-time PCR assay. 3)Results: Our results for inhibition of cancer cells by different concentrations of magnetic nano-oleuropein showed that the inhibition rate of AGS cancer cells was dependent on the concentration and exposure time of the drug. The relative expression of K-ras oncogene decreased at the concentrations higher than 4.12 μg/mL and increased at lower concentrations (p-value <0.01). Also, the expression of cd82 gene at the concentrations below IC50 (23.6 μg/mL) increased while at higher concentrations reduced significantly. 4)Conclusion: Balancing the expression of K-ras and cd82 oncogenes through the p53 protein could be one of the molecular reasons for inhibiting the AGS cells by magnetic nano-oleuropein. Therefore, magnetic nano-oleuropein at IC50 concentration plays a key role in inhibiting gastric cancer cells by the creation of an expression balance between K-ras and cd82 genes.

Keywords


Abtin, M., Alivand, M., Khaniani, M., Bastami, M.,Zaeifizadeh, M., &Derakhshan, S. (2018). Simulta- neous downregulation of miR‐21 and miR‐155 through oleuropein for breast cancer prevention and therapy. Journal of Cellular Biochemistry, June, 119(9). 
Andreadou,I.,  Iliodromitis, E. K.,  Mikros, E., Consta- ntinou, M., Agalias, A., Magiatis, P., Skaltsounis, A. L. , Kamber, E., Tsantili-Kakoulidou, A., & Kremastinos, D.T. (2006). The olive constituent oleuropein exhibits anti-ischemic, antioxidative, and hypolipidemic effects in anesthetized rabbits. J Nutr,  Aug,  136(8), 2213-9.
Barbara, B., Gabriele, T., & Roberta, M. (2014). Effects of the Olive-Derived Polyphenol Oleuropein on Human Health. Int J Mol Sci, Oct, 15(10), 18508–18524.
Barzegar, F., Zaefizadeh,  M.,  Yari, R., & Salehzadeh, A. (2019). Synthesis of Nano-Paramagnetic Oleuropein to Induce KRAS Over-Expression: A New Mechanism to Inhibit AGS Cancer Cell. Medicina, July, 55(7), 388.
Bazak, R., & Houri, M. (2015). Cancer active targeting by nanoparticles: a comprehensive review of literature. Journal of cancer research and clinical oncology, May, 141(5), 769-784.
Boss, A., Bishop, K. S., Marlow, G., Barnett, M. P., & Ferguson, L.R. (2016). Evidence to Support the Anti-Cancer Effect of Olive Leaf Extract and Future Directions. Nutrients,  Aug, 19 (8), 8.
Castellon, R., & Hamdi, H. K. (2005). Oleuropein, a non-toxic olive iridoid, is an anti-tumor agent and cytoskeleton disruptor. Biochem Biophys Res Commun, Sep, 2, 334(3), 769-78.
Choudhuri, T., Pal, S., Das, T., & Sa, G. (2005).  Curcumin selectively induces apoptosis in deregulated cyclin D1expressed cells at the G2 phase of cell cycle in a p53-dependent manner. J. Biol. Chem, May, 280(20), 20059-20068.
Crew, K. D., & Neugut, A. I. (2006). Epidemiology of gastric cancer. World journal of gastroenterology. Jun, 12(3), 354-362.
Hamdi,  H.  K., & Castellon,  R. (2005). Oleuropein, a non-toxic olive iridoid, is an anti-tumor agent and cytoskeleton disruptor. Biochemical and Biophysical Research Communications. Sep, 334(3), 769- 778.
Hassan, Z. K., Elamin, M. H., & Omer, S. A. (2014). Oleuropein induces apoptosis via the p53 pathway in breast cancer cells. Asian Pac J Cancer Prev, Jan,14(11), 6739-42.
Hinoda, Y., Adachi, Y., Takaoka, A., Mitsuuchi, H., Satoh, Y., Itoh, F., Kondoh, Y., & Imai, k. (1998). Decreased expression of the metastasis suppressor gene KAI1 in gastric cancer. Cancer Lett , Jul, 129(2), 229-34.
Hosseinian, Z., Rasouli, R., Azarnoush, A., Mortazavi, M., & Akbarzadeh, A. (2015). Evaluation of the efficacy of magnetic nanoparticles of iron-loaded with platinum siscon breast cancer in vivo and in vitro studies. Mol. Biotechnol, 5(20), 29-36.
Jackson, P., & Puisieux, A., (2016). Is the KAI1 Metastasis Suppressor Gene a Cellular Targetof p53? A Review of Current Evidence. Biochemical and Biophysical Research Communications, Nov, 278(3), 499 –502.
Kauffman, E. C., Robinson, V. L., Stadler, W. M., Sokoloff, M. H., & Rinker‑Schaeffer, C, W. (2003). Metas- tasis suppression: The evolving role of metastasis suppressor genes for regulating cancer cell growth at the secondary site. J Urol, Mar,169(3), 1122‑33.
Kebriaezadeh, A., Ashrafi, S., & Rasouli, R. (2016). Gadob- utrol-dendrimer effects on metastatic and apoptotic gene expression. Advances in Nano Research, 4, 145-156.
Liu, D., Li, X., & Chen, C. (2018). Target‑specific delivery of oxaliplatin to HER2‑positive gastric cancer cells in vivo using oxaliplatin‑au‑fe3o4‑herceptin nanopar- ticles. Onco- logy Letters, March, 15, 8079-8087.
Liu, M., Wang, J., Huang, B., Chen, A., & Li, X., (2016). Oleuropein inhibits the proliferation and invasion of glioma cells via suppression of the AKT signaling pathway. Oncol Rep, july, 28,  2009-2016.
Liu, W.M., & Zhang, X.A., (2006).  KAI1/CD82, a tumor metastasis suppressor. Cancer Lett, Aug 28, 240(2), 183‑94.
Luo, X., Peng, X., Wu, S., Shen, J., & Wang, L. (2017). Folic acid-functionalized polyethylenimine superparam- agnetic iron oxide nanoparticles as theranostic agents for magnetic resonance imaging and PD-L1 siRNA delivery for gastric cancer. Int J Nanomedicine, Jul 26, 12, 5331-5343.
Maleki, S. S., & Röcken, C. H. (2017). Chromosomal Instab- ility in Gastric Cancer Biology. Neoplasia,   May, 19(5), 412–420.
Mao, C., Zhou, J., Yang, Z., Huang, Y., Wu, X., Shen, H., Tang, J., & Chen, Q. (2012). KRAS, BRAF and PIK3CA mutations and the loss of PTEN expression in Chinese patients with colorectal cancer. PLoS One, 7(5), e36653.
Menendez, J. A., Vazquez-Martin, A., Garcia-Villalba, R., Carrasco-Pancorbo, A., Oliveras-Ferraros, C., Ferna- ndez-Gutierrez, A., & Segura-Carretero, A. (2008). tabAnti-HER2 (erbB-2) oncogene effects of phenolic compounds directly isolated from commercial Extra-Virgin Olive Oil (EVOO). BMC Cancer, Dec,18, 8, 377.
Morovati, A., Ahmadian, S., & Jafary, H. (2019). Cytotoxic effects and apoptosis induction of cisplatin-loaded iron oxide nanoparticles modified with chitosan in human breast cancer cells. Mol Biol Rep, Oct, 46(5), 5033-5039.
Namrata, N., Vijay, W., Minal, C., & Abhishek, S. (2016). KAI‑1 and p53 expression in oral squamous cell carcinomas: Markers of significance in future diagnostics and possibly therapeutics. Journal of Oral and Maxill- ofacial Pathology, Sep - Dec 20(3), 384-389.
Raggatt, L. J., & Partridge, N. C., (2010). Cellular and molecular mechanisms of bone remodeling. J Biol Chem,  Aug 13, 285(33), 25103-8.
Rakhshidan, Z., Zaefizadeh, M., & Pahlavan, B. (2019). Differential Proteomics analysis (2D) of prostate cancer cell lines under the treatment of natural antioxidant Oleuropein. Med J Tabriz Uni Med Sciences Health Services, January, 41(5), 56-64.
Salehi, S., Shandiz, A. S., Ghanbar, F., & Darvish, M. (2016). Phytosynthesis of silver nanoparticles using Artemisia marschalliana Sprengel aerial part extract and assessment of their antioxidant, anticancer, and antibacte- rial properties. Int J Nanomedicine,  Apr 29, 11, 1835-46.
Sattler, K. D. (2017).  Handbook of nanophysics: nanoparticles and quantum dots,1sd ed. CRC press , August 30, Book Description.
Shandiz, SAS., Farasati, S., & Saeedi, B. (2016). Up regulation of KAI1 gene expression and apoptosis effect of imatinib mesylate in gastric adenocarcinoma (AGS) cell line. Asian Pac J Trop Dis, 6(2), 120-125.
Song, C., Liu, L. Z., Pei, X. Q., Liu, X., Yang, L., Ye, F., Xie, X., Chen, J., Tang, H., & Xie, X. (2015). MiR-200c inhibits breast cancer proliferation by targeting KRAS. Oncotarget,  Oct 27, 6(33), 34968-78.
Tang, Y., Bhandaru, M., Cheng, Y., Lu, J., & Li, G., (2015). Ong CJ. The role of the metastasis suppressor gene KAI1 in melanoma angiogenesis. Pigment Cell Melanoma Res, Nov, 28(6), 696-706.
Wang, M.S., Chen, L., Xiong, Y.Q., Xu, J., Wang, J. P., & Meng, Z. L., (2017). Iron oxide magnetic nanoparticles
combined with actein suppress non-small-cell lung cancer growth in a p53-dependent manner. Int J Nanomedicine,  Oct 17,12, 7627-7651.
Wu, M., & Huang, sh. (2017). Magnetic nanoparticles in cancer diagnosis, drug delivery and treatment. Mol Clin Oncol, Nov, 7(5), 738–746.
Yan, C. M., Chai, E. Q., Cai, H. Y., Miao, G. Y., & Ma, W. (2015).  Oleuropein induces apoptosis via activation of caspases and suppression of phosphatidylinositol 3-kinase/protein kinase B pathway in HepG2 human hepatoma cell line. Mol Med Rep,  Jun,11(6), 4617-24.