Epigenetic in Insects

Document Type: Original Article

Author

Assistant Profesor, Environmental Science and Sustainable Agriculture. University of Sistan and Baluchestan, Iran.

Abstract

Epigenetic in insects is an important origin of biodiversity that can convert environmental stimuli into heritable phenotypic changes and biological variation without mutations and independent changes in the DNA sequence, by variation of gene expression levels. Epigenetic may play important roles in the parameters such as development, longevity, reproduction, gender-specific phenotypic variation, immunity and evolution of both insect-plant and insect-microbe interactions. To investigate the molecular bases of epigenetic, social insects like ants provide a natural experimental system.  In social insects, multiple phenotypes and distinct types of individuals arise from a single genome. The existence of alternative phenotypes encoded by the same genome is known as polyphenism. Caste polyphenism is originated from molecular information that once established can be later maintained through epigenetic inheritance. As well as, Host–parasite interactions are intimate epigenetic relationships. Insect Epigenetic mechanisms are divided in to before transcription and post-transcriptional gene regulation. DNA methylation and histone acetylation/deacetylation are before transcription and small non-coding RNAs known as microRNAs are referred to as post-transcriptional gene regulation. Methylation is common throughout the genome and it is reported as origin of differential gene expression in social insect castes. In general, insects possess relatively low levels of DNA methylation, compared to mammalian systems. Epigenetic studies in insects are not only progressing, but also promising to find a solution for pesticide resistance.

Keywords


Adcock, I.M., Lee, K.Y., 2006. Abnormal histone acetylase and deacetylase expression and function in lung inflammation. Inflamm. Res. 55, 311–321.

Ambros, V., 2004. The functions of animal microRNAs. Nature 431, 350–355.

Asgari, S., 2011. Role of microRNAs in insect host-microorganism interactions. Front. Physiol. 2, 48.

Bae, S., Kim, Y., 2009. IkB genes encoded in Cotesia plutellae bracovirus suppress an antiviral response and enhance baculovirus pathogenicity against the diamondback moth Plutella xylostella. J. Invertebr. Pathol. 102 (1), 79–87.

Bartel, D.P., 2004. MicroRNAs: genomics, biogenesis, mechanism, and function. Cell 116, 281–297.

Bartel, D.P., 2009. MicroRNAs: target recognition and regulatory functions. Cell 136, 215–233.

Bartel, D.P., Chen C.Z., 2004. Micromanagers of gene expression: The potentially widespread influence of metazoan microRNAs. Nat Rev Genet 5,396–400.

Bayarsaihan, D., 2011. Epigenetic mechanisms in inflammation. J. Dent. Res. 90, 9–17.

Beeler, S.M., Wong, G.T., Zheng, J.M., Bush, E.C., Remnant, E.J., Oldroyd, B.P., Drewell, R.A., 2014. Whole-genome DNA methylation profile of the jewel wasp (Nasonia vitripennis). G3 (Bethesda) 4, 383–388.

Berger, S.L., Kouzarides, T., Shiekhattar, R., Shilatifard, A., 2009. An operational definition of epigenetics. Genes Dev 23, 781–783.

Bingsohn, L., Knorr, E., Vilcinskas, A., 2016. The model beetle Tribolium castaneum can be used as an early warning system for transgenerational epigenetic side effects caused by pharmaceuticals. Comp. Biochem. Physiol. C Toxicol. Pharmacol. 185/186, 57–64.

Bitra, K., Suderman, R.J., Strand, M.R., 2012. Polydnavirus Ank proteins bind NF-κ B homodimers and inhibit processing of Relish. PLoS Pathog. 8, e1002722.

Bonasio R, Tu S, Reinberg D., 2010. Molecular signals of epigenetic states. Science 330,612–6.

Bonasio, R., Li, Q., Lian, J., Mutti, N. S., Jin, L., Zhao, H., et al., 2012.Genome-wide and caste-specific DNA methylomes of the ants Camponotus floridanus and Harpegnathos saltator. Curr. Biol. 22, 1755–1764. doi:10.1016/j.cub.2012.07.042

Bonasio R., 2014. The role of chromatin and epigenetics in the polyphenisms of ant castes. Brief Funct Genomics. 13(3),235-45.

Burggren W.W., 2017. Epigenetics in insects: Mechanisms, phenotypes and ecological and evolutionary implications. In: Insect epigenetics. Verlinden, H., (Eds.), Academic Press, pp. 1-30.

Bushati, N., Cohen, S.M., 2007. microRNA functions. Annu. Rev. Cell Dev. Biol. 23,175–205.

Cheeseman, K., Weitzman, J.B., 2015. Host-parasite interactions: an intimate epigenetic relationship. Cell. Microbiol. 17, 1121–1132.

Chen, Z., Li, S., Subramaniam, S., Shyy, J.Y., Chien, S., 2017. Epigenetic regulation: a new frontier for biomedical engineers. Annu. Rev. Biomed. Eng. 19,195-219.

Cingolani, P., Cao, X., Khetani, R.S., Chen, C.C., Coon, M., Sammak, A., Bollig-Fischer, A., Land, S., Huang, Y., Hudson, M.E., Garfinkel, M.D., Zhong, S., Robinson, G.E., Ruden, D.M., 2013. Intronic non-CG DNA hydroxymethylation and alternative mRNA splicing in honey bees. BMC Genomics 14, 666.

Choi, I.K., Hyun, S., 2012. Conserved microRNA miR-8 in fat body regulates innate immune homeostasis in Drosophila. Dev. Comp. Immunol. 37, 50–54.

Drewell, R.A., Bush, E.C., Remnant, E.J., Wong, G.T., Beeler, S.M., Stringham, J.L., Lim, J., Oldroyd, B.P., 2014. The dynamic DNA methylation cycle from egg to sperm in the honey bee Apis mellifera. Development 141, 2702–2711.

Dubovskiy, I.M., Grizanova, E.V., Whitten, M.M., Mukherjee, K., Greig, C., Alikina, T., Kabilov, M., Vilcinskas, A., Glupov, V.V., Butt, T.M., 2016. Immuno-physiological adaptations confer wax moth Galleria mellonella resistance to Bacillus thuringiensis. Virulence 7 (8), 860–870.

Elango, N., Hunt, B.G., Goodisman, M.A., Yi, .S.V., 2009. DNA methylation is widespread and associated with differential gene expression in castes of the honeybee, Apis mellifera. Proc. Natl. Acad. Sci. U.S.A. 106, 11206–11211.

Fassi Fehri, L., et al., 2010. Helicobacter pylori induces miR-155 in T cells in a cAMPFoxp3–dependent manner. PLoS ONE 5,e9500.

Feliciello, I., Parazajder, J., Akrap, I., Ugarkovic, D., 2013. First evidence of DNA methylation in insect Tribolium castaneum: environmental regulation of DNA methylation within heterochromatin. Epigenetics 8, 534–541.

Field, L.M., 2000. Methylation and expression of amplified esterase genes in the aphid Myzus persicae (Sulzer). Biochem. J. 349, 863–868. doi:10.1042/bj3490863

Foret S, Kucharski R, Pellegrini M, Feng S, Jacobsen SE, et al., 2012. DNA methylation dynamics, metabolic fluxes, gene splicing, and alternative phenotypes in honey bees. Proc. Natl. Acad. Sci. U.S.A. 109, 4968–4973.

Freitak, D., Knorr, E., Vogel, H., Vilcinskas, A., 2012. Gender- and stressor-specific microRNA expression in Tribolium castaneum. Biol. Lett. 8, 860–863.

Freitak, D., Schmidtberg, H., Dickel, F., Lochnit, G., Vogel, H., Vilcinskas, A., 2014. The maternal transfer of bacteria can mediate trans-generational immune priming in insects. Virulence 5, 547e554.

Fullaondo, A., Lee, S.Y., 2012. Identification of putative miRNA involved in Drosophila melanogaster immune response. Dev. Comp. Immunol. 36, 267–273.

Gadjev, I., 2015. Nature and nuture: lamarck’s legacy. Biol. J. Linn. Soc. 114, 242–247. doi:10.1111/bij.12439

Gavery, M. R., Roberts, S. B., 2010. DNA methylation patterns provide insight into epigenetic regulation in the Pacific oyster (Crassostrea gigas). BMC Genomics 11,483.

Giraldez A.J., et al., 2005. MicroRNAs regulate brain morphogenesis in zebrafish. Science 308,833–838.

Glastad, K.M., Hunt, B.G., Yi, S.V., Goodisman, M.A., 2011. DNA methylation in insects: on the brink of the epigenomic era. Insect Mol. Biol. 20, 553–565.

Goll, M.G., Bestor, T.H., 2005. Eukaryotic cytosine methyltransferases. Ann. Rev. Biochem. 74, 481–514.

Gomez-Diaz, E., Jorda, M., Peindo, M.A., Rivero, A., 2012. Epigenetics of host–pathogen interactions: the road ahead and the road behind. PLoS Pathog. 8, e1003007.

Hamon, M.A., Cossart, P., 2008. Histone modifications and chromatin remodeling during bacterial infections. Cell Host Microbe 4, 100–109.

Hansen, A. K., and Moran, N. A. (2014). The impact of microbial symbionts on host plant utilization by herbivorous insects. Mol. Ecol. 23, 1473–1496. doi:10.1111/mec.12421

He, Y., Du, Y., Li, J., Liu, P., Wang, Q., Li, Z., 2015. Analysis of DNA methylation in different tissues of Fenneropenaeus chinensis from the wild population and Huanghai No. 1. Acta Oceanol. Sin. 34, 175–180.

Ho¨lldobler B, Wilson EO. The Ants. Cambridge, MA: Harvard University Press, 1990.

Holt, R.A., Subramanian, G.M., Halpern, A., Sutton, G.G., Charlab, R., et al., 2002. The genome sequence of the malaria mosquito Anopheles gambiae. Science 298, 129–149.

Hu, Y.T., Wu, T.C., Yang, E.C., Wu, P.C., Lin, P.T., Wu, Y.L., 2017. Regulation of genes related to immune signaling and detoxification in Apis mellifera by an inhibitor of histone deacetylation. Sci. Rep. 7, 41255.

Hussain, M., Frentiu, F.D., Moreira, L.A., O'Neill, S.L., Asgari, S., 2011. Wolbachia uses host microRNAs to manipulate host gene expression and facilitate colonization of the dengue vector Aedes aegypti. Proc. Natl. Acad. Sci. U.S.A.  108(22), 9250-5.

Jaenisch, R., Bird, A., 2003. Epigenetic regulation of gene expression: how the genome integrates intrinsic and environmental signals. Nat. Genetics 33, 245–254.

Keller, L., Genoud, M., 1997. Extraordinary lifespans in ants: a test of evolutionary theories of ageing. Nature 389,958–60.

Kim, D., Thairu, M.W., Hansen, A.K., 2016. Novel insights into insect-microbe interactions—role of epigenomics and small RNAs. Front. Plant Sci. 7, 1164.

Kinnaird, J.H., Weir, W., Durrani, Z., Pillai, S.S., Baird, M., Shiels, B.R., 2013. A bovine lymphosarcoma cell line infected with Theileria annulata exhibits an irreversible reconfiguration of host cell gene expression. PLoS ONE 8, e66833.

Li-Byarlay, H., Li, Y., Stround, H., Feng, S., Newman, T. C., Kaneda, M., et al., 2013. RNA interference knockdown of DNA methyl-transferase 3 affects gene alternative splicing in the honey bee. Proc. Natl. Acad. Sci. U.S.A. 110, 12750–12755. doi: 10.1073/pnas.1310735110

Lemos, B., Branco, A.T., Hartl, D.L., 2010. Epigenetic effects of polymorphic Y chromosomes modulate chromatin components, immune response, and sexual conflict. Proc. Natl. Acad. Sci. U.S.A. 107 (36), 15826–15831.

Lyko, F., Ramsahoye, B.H., Jaenisch, R., 2000. DNA methylation in Drosophila melanogaster. Nature 408, 538–540.

Lyko, F., Maleszka, R., 2011. Insects as innovative models for functional studies of DNA methylation. Trends Genet 27, 127–131.

Marhold, J., Rothe, N., Pauli, A., Mund, C., Kuehle, K., Brueckner, B., Lyko, F., 2004. Conservation of DNA methylation in dipteran insects. Insect Mol. Biol. 13 (2), 117–123.

Marks, P.A., Miller, T., Richon, V.M., 2003. Histone deacetylases. Curr. Opin. Pharmacol. 3, 344–351.

Mukherjee, K., Fischer, R., Vilcinskas, A., 2012. Histone acetylation mediates epigenetic regulation of transcriptional reprogramming in insects during metamorphosis, wounding and infection. Front. Zool. 9, 25.

Mukherjee, K., Hain, T., Fischer, R., Chakraborty, T., Vilcinskas, A., 2013. Brain infection and activation of neuronal repair mechanisms by the human pathogen Listeria monocytogenes in the lepidopteran model host Galleria mellonella. Virulence 4, 324e332.

Mukherjee, K., Twyman, R.M., Vilcinskas, A., 2015. Insects as models to study the epigenetic basis of disease. Prog. Biophys. Mol. Biol. 118, 69–78.

Mukherjee, K., Grizanova, E., Chetkova, E., Lehmann, R., Dubovskiy, I., Vilcinskas, A., 2017. Experimental evolution of resistance against Bacillus thuringiensis in the insect modelhost Galleria mellonella results in epigenetic modifications. Virulence 8(8), 1618-1630.

Mukherjee, K., Vilcinskas, A., 2018. The entomopathogenic fungus Metarhizium robertsii communicates with the insect host Galleria mellonella during infection. Virulence 9(1), 402-413.

Nene, V., Wortman, J.R., Lawson, D., Haas, B., Kodira, C., et al., 2007. Genome sequence of Aedes aegypti, a major arbovirus vector. Science 316, 1718–1723.

Peleg, S., Feller, C., Forne, I., Schiller, E., Sevin, D., Schauer, T., Regnard, C., Straub, T., Prestel, M., Klima, C., Schmitt Nogueira, M., Becker, L., Klopstock, T., Sauer, U., Becker, P.B., Imhof, A., Ladurner, A.G., 2016. Life span extension by targeting a link between metabolism and histone acetylation in Drosophila. EMBO Rep. 17 (3), 455–469.

Pigeault, R., Garnier, R., Rivero, A., Gandon, S., 2016. Evolution of transgenerational immunity in invertebrates. Proc. Biol. Sci. 283 (1839). Pii, 20161136.

Regev, A., Lamb, M., Jablonka, E., 1998. The role of DNA methylation in invertebrates: developmental regulation of genome defense? Mol. Biol. Evol. 15, 880–891.

Reynolds, J.A., Bautista-Jimenez, R., Denlinger, D.L., 2016. Changes in histone acetylation as potential mediators of pupal diapause in the flesh fly, Sarcophaga bullata. Insect Biochem. Mol. Biol. 76, 29–37.

Robertson, K. D., Hayward, S. D., Ling, P. D., Samid, D., and Ambinder, R.F., 1995. Transcriptional activation of the Epstein-Barr virus latency C promoter after 5-azacytidine treatment: evidence that demethylation at a single CpG site is crucial. Mol. Cell. Biol. 15, 6150–6159.

Sato, F., Tsuchiya, S., Meltzer, S., Shimizu, K., 2011. MicroRNAs and epigenetics. FEBS J. 278, 1598–1609.

Sessions, O.M., Tan, Y., Goh, K.C., Liu, Y., Tan, P., Rozen, S., Ooi, E.E., 2013. Host cell transcriptome profile during wild-type and attenuated dengue virus infection. PLoS Negl. Trop. Dis. 7, e2107.

Sharakhov, I.V., Sharakhova, M.V., 2015. Heterochromatin, histone modifications, and nuclear architecture in disease vectors. Curr Opin Insect Sci. 10,110-117.

Song, K.H., Jung, M.K., Eum, J.H., Hwang, I.C., Han, S.S., 2008. Proteomic analysis of parasitized Plutella xylostella larvae plasma. J. Insect Physiol. 54, 1270–1280.

Suzuki, M. M., Bird, A., 2008. DNA methylation landscapes: provocative insights from epigenomics. Nat. Rev. Genet. 9, 465–476. doi: 10.1038/nrg2341

Vandegehuchte, M.B., Janssen, C.R., 2014. Epigenetics in an ecotoxicological context. Mutat. Res. Genet. Toxicol. Environ. Mutagen. 764–765, 36–45.

Vilcinskas, A., 2016. The role of epigenetics in host–parasite coevolution: lessons from the model host insects Galleria mellonella and Tribolium castaneum. Zoology (Jena) 119, 273–280.

Weiner, S. A. Toth, A. L., 2012. Epigenetics in social insects: a new direction for understanding the evolution of castes. Genet. Res. Int. 2012, 609810.

Xiang, H., Zhu, J., Chen, Q., Dai, F., Li, X., Li, M., et al., 2010. Single baseresolution methylome of the silkworm reveals a sparse epigenomic map. Nat. Biotechnol. 28, 516–520. doi: 10.1038/nbt.1626

Xiang, H., Li, X., Dai, F., Xu, X., Tan, A., Chen, L., Zhang, G., Ding, Y., Li, Q., Lian, J., Willden, A., Guo, Q., Xia, Q., Wang, J., Wang, W., 2013. Comparative methylomics between domesticated and wild silkworms implies possible epigenetic influences on silkworm domestication. BMC Genomics 14, 646.

Yan, H., Bonasio, R., Simola, D. F., Liebig, J., Berger, S. L., and Reinberg, D., 2015. DNA methylation in social insects: how epigenetics can control behavior and longevity. Annu. Rev. Entomol. 60, 435–452. doi: 10.1146/annurev-ento010814-020803

Ye, Y.H., Wollfit, M., Huttley, G.A., Rance`s, E., Caragata, E.P., Popovici, J., O’Neill, S.L., McGraw, E.A., 2013. Infection with a virulent strain of disrupts genome wide-patterns of cytosine methylation in the mosquito Aedes aegypti. PLoS One 8, e66482.

Zhang, G., Hussain, M., O'Neill, S.L., Asgari, S., 2013. Wolbachia uses a host microRNA to regulate transcripts of a methyltransferase, contributing to dengue virus inhibition in Aedes aegypti. Proc. Natl. Acad. Sci. U.S.A. 110(25),10276-81. doi: 10.1073/pnas.1303603110.

Zhang, J., Xing, Y., Li, Y., Yin, C., Ge, C., and Li, F., 2015. DNA methyltransferases have an essential role in female fecundity in brown planthopper, Nilaparvata lugens. Biochem. Biophys. Res. Commun. 464, 83–88. doi: 10.1016/j.bbrc.2015.05.114.

Zhang, M., Chen, J., Liang, S., Li, G., Wang, F., and Ahmad, I., 2015. Differentially methylated genomic fragments related with sexual dimorphism of rice pests, Sogatella furcifera. Insect Sci. 22, 731–738. doi: 10.1111/1744-7917.